128 research outputs found

    Pharmacological rescue of impaired mitophagy in Parkinson's disease-related LRRK2 G2019S knock-in mice

    Get PDF
    Parkinson’s disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation – key features of the autophagy of mitochondria, known as mitophagy. Here, we investigated the role of LRRK2, a protein kinase frequently mutated in PD, in this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson’s disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy

    Founder cell configuration drives competitive outcome within colony biofilms

    Get PDF
    Bacteria can form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Exploiting competitive interactions between strains within the biofilm context can have potential applications in biological, medical, and industrial systems. By combining mathematical modelling with experimental assays, we reveal that spatial structure and competitive dynamics within biofilms are significantly affected by the location and density of the founder cells used to inoculate the biofilm. Using a species-independent theoretical framework describing colony biofilm formation, we show that the observed spatial structure and relative strain biomass in a mature biofilm comprising two isogenic strains can be mapped directly to the geographical distributions of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells’ potential for radial expansion. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extension of our study to non-isogenic strains that interact through local antagonisms, shows that even for strains with different competition strengths, a race for space remains the dominant mode of competition in low founder density biofilms. Our results, verified by experimental assays using Bacillus subtilis, highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications

    A Human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine

    Get PDF
    Abstract A high throughput histology (microTMA) platform was applied for testing drugs against tumors in a novel 3D heterotypic glioblastoma brain sphere (gBS) model consisting of glioblastoma tumor cells, iPSC-derived neurons, glial cells and astrocytes grown in a spheroid. The differential responses of gBS tumors and normal neuronal cells to sustained treatments with anti-cancer drugs temozolomide (TMZ) and doxorubicin (DOX) were investigated. gBS were exposed to TMZ or DOX over a 7-day period. Untreated gBS tumors increased in size over a 4-week culture period, however, there was no increase in the number of normal neuronal cells. TMZ (100 uM) and DOX (0.3 uM) treatments caused ~30% (P~0.07) and ~80% (P < 0.001) decreases in the size of the tumors, respectively. Neither treatment altered the number of normal neuronal cells in the model. The anti-tumor effects of TMZ and DOX were mediated in part by selective induction of apoptosis. This platform provides a novel approach for screening new anti-glioblastoma agents and evaluating different treatment options for a given patient

    ParticleStats: open source software for the analysis of particle motility and cytoskeletal polarity

    Get PDF
    The study of dynamic cellular processes in living cells is central to biology and is particularly powerful when the motility characteristics of individual objects within cells can be determined and analysed statistically. However, commercial programs only offer a limited range of inflexible analysis modules and there are currently no open source programs for extensive analysis of particle motility. Here, we describe ParticleStats (http://www.ParticleStats.com), a web server and open source programs, which input the X,Y coordinate positions of objects in time, and output novel analyses, graphical plots and statistics for motile objects. ParticleStats comprises three separate analysis programs. First, ParticleStats:Directionality for the global analysis of polarity, for example microtubule plus end growth in Drosophila oocytes. Second, ParticleStats:Compare for the analysis of saltatory movement in terms of runs and pauses. This can be applied to chromosome segregation and molecular motor-based movements. Thirdly ParticleStats:Kymographs for the analysis of kymograph images, for example as applied to separation of chromosomes in mitosis. These analyses have provided key insights into molecular mechanisms that are not possible from qualitative analysis alone and are widely applicable to many other cell biology problems

    A PAR-1–dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte

    Get PDF
    A PAR-1–mediated bias in microtubule organization in the Drosophila oocyte underlies posterior-directed mRNA transport

    Clinical outcomes in patients relapsed/refractory after ≄2 prior lines of therapy for follicular lymphoma: A systematic literature review and meta-analysis

    Get PDF
    BACKGROUND: Patients with follicular lymphoma (FL) can have high response rates to early lines of treatment. However, among FL patients relapsed/refractory (r/r) after ≄2 prior lines of therapy (LOT), remission tends to be shorter and there is limited treatment guidance. This study sought to evaluate the clinical outcomes for r/r FL after ≄2 prior LOT identified through systematic literature review. METHODS: Eligible studies included comparative or non-comparative interventional or observational studies of systemic therapies among adults with FL r/r after ≄2 prior LOT published prior to 31st May 2021. Prior LOT must have included an anti-CD20 monoclonal antibody and an alkylating agent, in combination or separately. Overall response rate (ORR) and complete response (CR) were estimated using inverse-variance weighting with Freeman-Tukey double-arcsine transformations. Kaplan-Meier (KM) curves for progression-free survival (PFS) and overall survival (OS) estimated by reconstructing digitized curves using the Guyot algorithm, and survival analyses were conducted, stratified by ≄2 prior LOT and ≄ 3 prior LOT groups (as defined in the source material). Restricting the analyses to the observational cohorts was investigated as a sensitivity analysis. RESULTS: The analysis-set included 20 studies published between 2014 and 2021. Studies were primarily US and/or European based, with the few exceptions using treatments approved in US/Europe. The estimated ORR was 58.47% (95% confidence interval [CI]: 51.13-65.62) and proportion of patients with CR was 19.63% (95% CI: 15.02-24.68). The median OS among those ≄2 prior LOT was 56.57 months (95% CI: 47.8-68.78) and median PFS was 9.78 months (95% CI: 9.01-10.63). The 24-month OS decreased from 66.50% in the ≄2 prior LOT group to 59.51% in the ≄3 prior LOT group, with a similar trend in PFS at 24-month (28.42% vs 24.13%). CONCLUSIONS: This study found that few r/r FL patients with ≄2 prior LOT achieve CR, and despite some benefit, approximately 1/3 of treated patients die within 24 months. The shorter median PFS with increasing prior LOT suggest treatment durability is suboptimal in later LOT. These findings indicate that patients are underserved by treatments currently available in the US and Europe

    Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    Get PDF
    Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation
    • 

    corecore